Cremona's table of elliptic curves

Curve 52700i1

52700 = 22 · 52 · 17 · 31



Data for elliptic curve 52700i1

Field Data Notes
Atkin-Lehner 2- 5- 17- 31+ Signs for the Atkin-Lehner involutions
Class 52700i Isogeny class
Conductor 52700 Conductor
∏ cp 30 Product of Tamagawa factors cp
deg 98880 Modular degree for the optimal curve
Δ 1408498144000 = 28 · 53 · 175 · 31 Discriminant
Eigenvalues 2- -1 5- -4 -2 -3 17-  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-14468,672232] [a1,a2,a3,a4,a6]
Generators [-118:850:1] [-67:1156:1] Generators of the group modulo torsion
j 10467169363856/44015567 j-invariant
L 6.9365861928031 L(r)(E,1)/r!
Ω 0.85764551120448 Real period
R 0.26959802941837 Regulator
r 2 Rank of the group of rational points
S 0.99999999999942 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 52700g1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations