Cremona's table of elliptic curves

Curve 52800bq2

52800 = 26 · 3 · 52 · 11



Data for elliptic curve 52800bq2

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 11+ Signs for the Atkin-Lehner involutions
Class 52800bq Isogeny class
Conductor 52800 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 147806208000 = 214 · 38 · 53 · 11 Discriminant
Eigenvalues 2+ 3+ 5- -2 11+  2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1713,-19503] [a1,a2,a3,a4,a6]
Generators [-32:39:1] [-13:20:1] Generators of the group modulo torsion
j 271593488/72171 j-invariant
L 8.045210397511 L(r)(E,1)/r!
Ω 0.75675681783121 Real period
R 5.315585012215 Regulator
r 2 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 52800hs2 3300r2 52800dn2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations