Cremona's table of elliptic curves

Curve 52800fx2

52800 = 26 · 3 · 52 · 11



Data for elliptic curve 52800fx2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 11+ Signs for the Atkin-Lehner involutions
Class 52800fx Isogeny class
Conductor 52800 Conductor
∏ cp 128 Product of Tamagawa factors cp
Δ 1568160000000000 = 214 · 34 · 510 · 112 Discriminant
Eigenvalues 2- 3- 5+  0 11+ -2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-330033,-73061937] [a1,a2,a3,a4,a6]
Generators [687:4992:1] Generators of the group modulo torsion
j 15529488955216/6125625 j-invariant
L 7.5155857042909 L(r)(E,1)/r!
Ω 0.19919130838543 Real period
R 4.7163112720654 Regulator
r 1 Rank of the group of rational points
S 1.0000000000008 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 52800x2 13200h2 10560bh2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations