Cremona's table of elliptic curves

Curve 52800h4

52800 = 26 · 3 · 52 · 11



Data for elliptic curve 52800h4

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 11+ Signs for the Atkin-Lehner involutions
Class 52800h Isogeny class
Conductor 52800 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 224885760000000 = 216 · 3 · 57 · 114 Discriminant
Eigenvalues 2+ 3+ 5+  0 11+ -6  6  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-36033,2543937] [a1,a2,a3,a4,a6]
Generators [137:400:1] Generators of the group modulo torsion
j 5052857764/219615 j-invariant
L 4.7317104335444 L(r)(E,1)/r!
Ω 0.55354957067994 Real period
R 1.0684929327367 Regulator
r 1 Rank of the group of rational points
S 1.0000000000035 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 52800gv4 6600bc3 10560p3 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations