Cremona's table of elliptic curves

Curve 5320h1

5320 = 23 · 5 · 7 · 19



Data for elliptic curve 5320h1

Field Data Notes
Atkin-Lehner 2- 5- 7- 19- Signs for the Atkin-Lehner involutions
Class 5320h Isogeny class
Conductor 5320 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 3072 Modular degree for the optimal curve
Δ 12771458000 = 24 · 53 · 72 · 194 Discriminant
Eigenvalues 2-  0 5- 7- -4  2  2 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2162,38309] [a1,a2,a3,a4,a6]
Generators [-47:190:1] Generators of the group modulo torsion
j 69850705729536/798216125 j-invariant
L 3.9962276089661 L(r)(E,1)/r!
Ω 1.26794839377 Real period
R 1.050575777532 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 10640d1 42560m1 47880n1 26600c1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations