Cremona's table of elliptic curves

Curve 53361v1

53361 = 32 · 72 · 112



Data for elliptic curve 53361v1

Field Data Notes
Atkin-Lehner 3- 7+ 11- Signs for the Atkin-Lehner involutions
Class 53361v Isogeny class
Conductor 53361 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 3947328 Modular degree for the optimal curve
Δ -3.2700918762339E+20 Discriminant
Eigenvalues  2 3-  2 7+ 11-  3  2 -1 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-15065589,-22524311021] [a1,a2,a3,a4,a6]
Generators [3638055422058995140666708219493489948936612210484867914360326:581694869896058982250519780686726040921816282613566029811542349:138995870062396974443509021055177712736035717258788038744] Generators of the group modulo torsion
j -3469312/3 j-invariant
L 14.568909859802 L(r)(E,1)/r!
Ω 0.03831338376852 Real period
R 95.064103107051 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 17787e1 53361bu1 53361x1 Quadratic twists by: -3 -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations