Cremona's table of elliptic curves

Curve 5415i1

5415 = 3 · 5 · 192



Data for elliptic curve 5415i1

Field Data Notes
Atkin-Lehner 3- 5+ 19- Signs for the Atkin-Lehner involutions
Class 5415i Isogeny class
Conductor 5415 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 402192 Modular degree for the optimal curve
Δ 3.665587481001E+21 Discriminant
Eigenvalues  2 3- 5+ -2  1 -2  2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,1,-4734996,-2692708189] [a1,a2,a3,a4,a6]
Generators [-13638:165479:8] Generators of the group modulo torsion
j 1914902401024/597871125 j-invariant
L 7.8073474307672 L(r)(E,1)/r!
Ω 0.10485092148174 Real period
R 5.3186721274867 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 86640bx1 16245n1 27075j1 5415b1 Quadratic twists by: -4 -3 5 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations