Cremona's table of elliptic curves

Curve 54208bq1

54208 = 26 · 7 · 112



Data for elliptic curve 54208bq1

Field Data Notes
Atkin-Lehner 2+ 7- 11- Signs for the Atkin-Lehner involutions
Class 54208bq Isogeny class
Conductor 54208 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 9123840 Modular degree for the optimal curve
Δ -5.8509573797375E+22 Discriminant
Eigenvalues 2+ -3 -2 7- 11-  5 -8 -3 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-8140396,-14674967120] [a1,a2,a3,a4,a6]
Generators [3974:125440:1] Generators of the group modulo torsion
j -8773917273/8605184 j-invariant
L 2.3178137269268 L(r)(E,1)/r!
Ω 0.042979960097715 Real period
R 2.6963888771063 Regulator
r 1 Rank of the group of rational points
S 1.0000000000033 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 54208ck1 1694j1 54208u1 Quadratic twists by: -4 8 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations