Cremona's table of elliptic curves

Curve 54288h2

54288 = 24 · 32 · 13 · 29



Data for elliptic curve 54288h2

Field Data Notes
Atkin-Lehner 2+ 3- 13+ 29- Signs for the Atkin-Lehner involutions
Class 54288h Isogeny class
Conductor 54288 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -78369461044992 = -1 · 28 · 37 · 136 · 29 Discriminant
Eigenvalues 2+ 3-  0 -4  4 13+  2  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2415,428366] [a1,a2,a3,a4,a6]
Generators [770:8343:8] Generators of the group modulo torsion
j -8346562000/419932383 j-invariant
L 5.3883206121342 L(r)(E,1)/r!
Ω 0.50607470166904 Real period
R 5.3236415437946 Regulator
r 1 Rank of the group of rational points
S 0.99999999999939 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 27144k2 18096a2 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations