Cremona's table of elliptic curves

Curve 5439i1

5439 = 3 · 72 · 37



Data for elliptic curve 5439i1

Field Data Notes
Atkin-Lehner 3- 7- 37- Signs for the Atkin-Lehner involutions
Class 5439i Isogeny class
Conductor 5439 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 1048320 Modular degree for the optimal curve
Δ -2.4904454386641E+22 Discriminant
Eigenvalues -2 3- -1 7-  1  1 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-124065566,-531989441686] [a1,a2,a3,a4,a6]
j -1795102530323910983888896/211684369494348891 j-invariant
L 0.90471889823504 L(r)(E,1)/r!
Ω 0.022617972455876 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 87024co1 16317m1 777b1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations