Cremona's table of elliptic curves

Curve 54587c1

54587 = 132 · 17 · 19



Data for elliptic curve 54587c1

Field Data Notes
Atkin-Lehner 13+ 17- 19- Signs for the Atkin-Lehner involutions
Class 54587c Isogeny class
Conductor 54587 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 6120576 Modular degree for the optimal curve
Δ -4.4748465622406E+21 Discriminant
Eigenvalues  2 -1 -2  4  0 13+ 17- 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-19660164,-33700258161] [a1,a2,a3,a4,a6]
Generators [772045911490:40726936010949:117649000] Generators of the group modulo torsion
j -174110526670532497408/927081755719067 j-invariant
L 9.2647126370762 L(r)(E,1)/r!
Ω 0.035837234608754 Real period
R 14.362331894036 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4199b1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations