Cremona's table of elliptic curves

Curve 55062b1

55062 = 2 · 32 · 7 · 19 · 23



Data for elliptic curve 55062b1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 19+ 23+ Signs for the Atkin-Lehner involutions
Class 55062b Isogeny class
Conductor 55062 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1645056 Modular degree for the optimal curve
Δ -1129945311499237632 = -1 · 28 · 33 · 7 · 193 · 237 Discriminant
Eigenvalues 2+ 3+  2 7- -6  5 -4 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-855156,308860624] [a1,a2,a3,a4,a6]
j -2561511294883247297499/41849826351823616 j-invariant
L 1.1017471158427 L(r)(E,1)/r!
Ω 0.27543677867776 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 55062y1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations