Cremona's table of elliptic curves

Curve 55770ca1

55770 = 2 · 3 · 5 · 11 · 132



Data for elliptic curve 55770ca1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- 13- Signs for the Atkin-Lehner involutions
Class 55770ca Isogeny class
Conductor 55770 Conductor
∏ cp 368 Product of Tamagawa factors cp
deg 208965120 Modular degree for the optimal curve
Δ -1.6622168635704E+28 Discriminant
Eigenvalues 2- 3+ 5+  4 11- 13- -6  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-55289302741,5003894186284859] [a1,a2,a3,a4,a6]
j -1762612641186222996390586933/1567463776557465600 j-invariant
L 3.004398454863 L(r)(E,1)/r!
Ω 0.032656504942078 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 55770o1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations