Cremona's table of elliptic curves

Curve 5772c1

5772 = 22 · 3 · 13 · 37



Data for elliptic curve 5772c1

Field Data Notes
Atkin-Lehner 2- 3- 13+ 37- Signs for the Atkin-Lehner involutions
Class 5772c Isogeny class
Conductor 5772 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 816 Modular degree for the optimal curve
Δ -369408 = -1 · 28 · 3 · 13 · 37 Discriminant
Eigenvalues 2- 3-  0  4 -3 13+ -3  7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-53,135] [a1,a2,a3,a4,a6]
j -65536000/1443 j-invariant
L 3.0157808056342 L(r)(E,1)/r!
Ω 3.0157808056342 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 23088k1 92352j1 17316b1 75036f1 Quadratic twists by: -4 8 -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations