Cremona's table of elliptic curves

Curve 5776l3

5776 = 24 · 192



Data for elliptic curve 5776l3

Field Data Notes
Atkin-Lehner 2- 19- Signs for the Atkin-Lehner involutions
Class 5776l Isogeny class
Conductor 5776 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -4.9141118538543E+20 Discriminant
Eigenvalues 2-  1  0  1  6 -5  3 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-493968,-1075051756] [a1,a2,a3,a4,a6]
Generators [2412674634:125744906240:804357] Generators of the group modulo torsion
j -69173457625/2550136832 j-invariant
L 4.7845911512788 L(r)(E,1)/r!
Ω 0.072290130085258 Real period
R 8.27324412343 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 722e3 23104bt3 51984ci3 304b3 Quadratic twists by: -4 8 -3 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations