Cremona's table of elliptic curves

Curve 57792df1

57792 = 26 · 3 · 7 · 43



Data for elliptic curve 57792df1

Field Data Notes
Atkin-Lehner 2- 3- 7- 43- Signs for the Atkin-Lehner involutions
Class 57792df Isogeny class
Conductor 57792 Conductor
∏ cp 60 Product of Tamagawa factors cp
deg 184320 Modular degree for the optimal curve
Δ 157810996224 = 210 · 35 · 73 · 432 Discriminant
Eigenvalues 2- 3- -2 7-  2 -2 -2  8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-111189,-14307669] [a1,a2,a3,a4,a6]
Generators [495:7224:1] Generators of the group modulo torsion
j 148461257362505728/154112301 j-invariant
L 6.9949980518295 L(r)(E,1)/r!
Ω 0.26144708266309 Real period
R 1.7836619123894 Regulator
r 1 Rank of the group of rational points
S 1.0000000000082 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 57792g1 14448t1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations