Cremona's table of elliptic curves

Curve 57792f1

57792 = 26 · 3 · 7 · 43



Data for elliptic curve 57792f1

Field Data Notes
Atkin-Lehner 2+ 3+ 7+ 43+ Signs for the Atkin-Lehner involutions
Class 57792f Isogeny class
Conductor 57792 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 387072 Modular degree for the optimal curve
Δ 27768501112943808 = 26 · 36 · 712 · 43 Discriminant
Eigenvalues 2+ 3+  2 7+ -4  2  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-81012,-3779442] [a1,a2,a3,a4,a6]
Generators [-97935222406450:-656448417220169:1976656375000] Generators of the group modulo torsion
j 918749595971305792/433882829889747 j-invariant
L 5.525439425891 L(r)(E,1)/r!
Ω 0.29634894694173 Real period
R 18.645044913523 Regulator
r 1 Rank of the group of rational points
S 1.0000000000158 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 57792bs1 28896h3 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations