Cremona's table of elliptic curves

Curve 57950c1

57950 = 2 · 52 · 19 · 61



Data for elliptic curve 57950c1

Field Data Notes
Atkin-Lehner 2+ 5+ 19+ 61+ Signs for the Atkin-Lehner involutions
Class 57950c Isogeny class
Conductor 57950 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 2193408 Modular degree for the optimal curve
Δ -538769364992000000 = -1 · 217 · 56 · 19 · 614 Discriminant
Eigenvalues 2+ -3 5+  1 -2 -3 -7 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1413367,-647351459] [a1,a2,a3,a4,a6]
Generators [250743:23828566:27] Generators of the group modulo torsion
j -19983368632718354625/34481239359488 j-invariant
L 1.5740468545055 L(r)(E,1)/r!
Ω 0.069224670058729 Real period
R 5.6845588908004 Regulator
r 1 Rank of the group of rational points
S 0.99999999995247 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2318c1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations