Cremona's table of elliptic curves

Curve 59241o1

59241 = 3 · 72 · 13 · 31



Data for elliptic curve 59241o1

Field Data Notes
Atkin-Lehner 3- 7+ 13- 31+ Signs for the Atkin-Lehner involutions
Class 59241o Isogeny class
Conductor 59241 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 320544 Modular degree for the optimal curve
Δ 27509920893 = 37 · 74 · 132 · 31 Discriminant
Eigenvalues  2 3-  2 7+  3 13- -1 -7 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-185432,-30796321] [a1,a2,a3,a4,a6]
Generators [-53778:73:216] Generators of the group modulo torsion
j 293689176534519808/11457693 j-invariant
L 18.013289026586 L(r)(E,1)/r!
Ω 0.23006639631955 Real period
R 5.5925746761032 Regulator
r 1 Rank of the group of rational points
S 1.0000000000155 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 59241k1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations