Cremona's table of elliptic curves

Curve 59290cv1

59290 = 2 · 5 · 72 · 112



Data for elliptic curve 59290cv1

Field Data Notes
Atkin-Lehner 2- 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 59290cv Isogeny class
Conductor 59290 Conductor
∏ cp 256 Product of Tamagawa factors cp
deg 1474560 Modular degree for the optimal curve
Δ -3.6811460728577E+19 Discriminant
Eigenvalues 2-  0 5+ 7- 11- -6 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-173053,-293179323] [a1,a2,a3,a4,a6]
Generators [807:9200:1] [6558:82627:8] Generators of the group modulo torsion
j -2749884201/176619520 j-invariant
L 13.176683917738 L(r)(E,1)/r!
Ω 0.090489856594761 Real period
R 2.2752349706646 Regulator
r 2 Rank of the group of rational points
S 0.99999999999917 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8470ba1 5390d1 Quadratic twists by: -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations