Cremona's table of elliptic curves

Curve 59760bi1

59760 = 24 · 32 · 5 · 83



Data for elliptic curve 59760bi1

Field Data Notes
Atkin-Lehner 2- 3- 5- 83+ Signs for the Atkin-Lehner involutions
Class 59760bi Isogeny class
Conductor 59760 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 258048 Modular degree for the optimal curve
Δ 304541702553600 = 226 · 37 · 52 · 83 Discriminant
Eigenvalues 2- 3- 5-  0  6  6  0  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-31467,1977626] [a1,a2,a3,a4,a6]
j 1153990560169/101990400 j-invariant
L 4.2519768917985 L(r)(E,1)/r!
Ω 0.53149711157307 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7470q1 19920h1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations