Cremona's table of elliptic curves

Curve 59850et1

59850 = 2 · 32 · 52 · 7 · 19



Data for elliptic curve 59850et1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ 19- Signs for the Atkin-Lehner involutions
Class 59850et Isogeny class
Conductor 59850 Conductor
∏ cp 72 Product of Tamagawa factors cp
deg 10886400 Modular degree for the optimal curve
Δ 5.73464199168E+21 Discriminant
Eigenvalues 2- 3- 5+ 7+ -3  7 -6 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-74314805,-246536362803] [a1,a2,a3,a4,a6]
j 6375616158287489425/805524471808 j-invariant
L 3.7022565329476 L(r)(E,1)/r!
Ω 0.051420229658656 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6650b1 59850dm1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations