Cremona's table of elliptic curves

Curve 5985k1

5985 = 32 · 5 · 7 · 19



Data for elliptic curve 5985k1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 19+ Signs for the Atkin-Lehner involutions
Class 5985k Isogeny class
Conductor 5985 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 720 Modular degree for the optimal curve
Δ -484785 = -1 · 36 · 5 · 7 · 19 Discriminant
Eigenvalues -1 3- 5+ 7-  0 -4  3 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-23,-48] [a1,a2,a3,a4,a6]
Generators [6:-1:1] Generators of the group modulo torsion
j -1771561/665 j-invariant
L 2.3183674396453 L(r)(E,1)/r!
Ω 1.0736855744562 Real period
R 2.1592610488592 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 95760dg1 665c1 29925m1 41895bv1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations