Cremona's table of elliptic curves

Curve 60030y2

60030 = 2 · 32 · 5 · 23 · 29



Data for elliptic curve 60030y2

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 23+ 29- Signs for the Atkin-Lehner involutions
Class 60030y Isogeny class
Conductor 60030 Conductor
∏ cp 224 Product of Tamagawa factors cp
Δ 32326702473600 = 27 · 33 · 52 · 232 · 294 Discriminant
Eigenvalues 2- 3+ 5+ -4  0  4  8  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-8093,62757] [a1,a2,a3,a4,a6]
Generators [-57:608:1] Generators of the group modulo torsion
j 2170892204521587/1197285276800 j-invariant
L 8.4091936068841 L(r)(E,1)/r!
Ω 0.57083187110213 Real period
R 0.26306199627535 Regulator
r 1 Rank of the group of rational points
S 1.0000000000119 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 60030f2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations