Cremona's table of elliptic curves

Curve 60775j1

60775 = 52 · 11 · 13 · 17



Data for elliptic curve 60775j1

Field Data Notes
Atkin-Lehner 5+ 11- 13+ 17- Signs for the Atkin-Lehner involutions
Class 60775j Isogeny class
Conductor 60775 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 96768 Modular degree for the optimal curve
Δ 6319650390625 = 59 · 114 · 13 · 17 Discriminant
Eigenvalues -1  0 5+  2 11- 13+ 17-  6 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-13380,586622] [a1,a2,a3,a4,a6]
Generators [34:395:1] Generators of the group modulo torsion
j 16952806157769/404457625 j-invariant
L 4.1835740951146 L(r)(E,1)/r!
Ω 0.75176755231239 Real period
R 2.7824917970058 Regulator
r 1 Rank of the group of rational points
S 0.99999999999661 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12155e1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations