Cremona's table of elliptic curves

Curve 61488v1

61488 = 24 · 32 · 7 · 61



Data for elliptic curve 61488v1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 61+ Signs for the Atkin-Lehner involutions
Class 61488v Isogeny class
Conductor 61488 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 241920 Modular degree for the optimal curve
Δ 9600272608002048 = 218 · 36 · 77 · 61 Discriminant
Eigenvalues 2- 3-  2 7+  1 -4  1  5 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-57459,2425138] [a1,a2,a3,a4,a6]
Generators [-187209:361034:729] Generators of the group modulo torsion
j 7026036894577/3215111872 j-invariant
L 7.0611765025183 L(r)(E,1)/r!
Ω 0.36644321767135 Real period
R 9.6347485256667 Regulator
r 1 Rank of the group of rational points
S 1.0000000000169 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7686j1 6832c1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations