Cremona's table of elliptic curves

Curve 6160n4

6160 = 24 · 5 · 7 · 11



Data for elliptic curve 6160n4

Field Data Notes
Atkin-Lehner 2- 5- 7- 11+ Signs for the Atkin-Lehner involutions
Class 6160n Isogeny class
Conductor 6160 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 42257600000000 = 212 · 58 · 74 · 11 Discriminant
Eigenvalues 2-  0 5- 7- 11+ -6  6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-11147,-327686] [a1,a2,a3,a4,a6]
j 37397086385121/10316796875 j-invariant
L 1.8971512671809 L(r)(E,1)/r!
Ω 0.47428781679521 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 385a3 24640bo3 55440dt3 30800z3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations