Cremona's table of elliptic curves

Curve 6162c1

6162 = 2 · 3 · 13 · 79



Data for elliptic curve 6162c1

Field Data Notes
Atkin-Lehner 2+ 3+ 13- 79- Signs for the Atkin-Lehner involutions
Class 6162c Isogeny class
Conductor 6162 Conductor
∏ cp 7 Product of Tamagawa factors cp
deg 11760 Modular degree for the optimal curve
Δ 1903539011712 = 27 · 3 · 137 · 79 Discriminant
Eigenvalues 2+ 3+  0  1  0 13-  5  5 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-19010,998772] [a1,a2,a3,a4,a6]
Generators [-11:1104:1] Generators of the group modulo torsion
j 759811318037187625/1903539011712 j-invariant
L 2.6784335061615 L(r)(E,1)/r!
Ω 0.83457644404688 Real period
R 0.45847610575692 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 49296bb1 18486x1 80106u1 Quadratic twists by: -4 -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations