Cremona's table of elliptic curves

Curve 6195b2

6195 = 3 · 5 · 7 · 59



Data for elliptic curve 6195b2

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 59- Signs for the Atkin-Lehner involutions
Class 6195b Isogeny class
Conductor 6195 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ 92145638025 = 32 · 52 · 76 · 592 Discriminant
Eigenvalues -1 3+ 5+ 7-  0  6 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-2156,-36556] [a1,a2,a3,a4,a6]
Generators [-26:65:1] Generators of the group modulo torsion
j 1108364408319169/92145638025 j-invariant
L 2.1107368899346 L(r)(E,1)/r!
Ω 0.70433071868123 Real period
R 0.99893266706994 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 99120cj2 18585n2 30975s2 43365r2 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations