Cremona's table of elliptic curves

Curve 62234f1

62234 = 2 · 292 · 37



Data for elliptic curve 62234f1

Field Data Notes
Atkin-Lehner 2+ 29- 37+ Signs for the Atkin-Lehner involutions
Class 62234f Isogeny class
Conductor 62234 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 7795200 Modular degree for the optimal curve
Δ -2198586986934898688 = -1 · 212 · 299 · 37 Discriminant
Eigenvalues 2+  3 -4 -2  1 -2 -7  6 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-7717594,8254462004] [a1,a2,a3,a4,a6]
j -3504189196269/151552 j-invariant
L 0.97777714973074 L(r)(E,1)/r!
Ω 0.24444428796382 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 62234n1 Quadratic twists by: 29


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations