Cremona's table of elliptic curves

Curve 6225c1

6225 = 3 · 52 · 83



Data for elliptic curve 6225c1

Field Data Notes
Atkin-Lehner 3+ 5- 83- Signs for the Atkin-Lehner involutions
Class 6225c Isogeny class
Conductor 6225 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 7200 Modular degree for the optimal curve
Δ -2010188671875 = -1 · 32 · 58 · 833 Discriminant
Eigenvalues -1 3+ 5-  3 -1  4 -1 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-263,-68344] [a1,a2,a3,a4,a6]
Generators [69:463:1] Generators of the group modulo torsion
j -5151505/5146083 j-invariant
L 2.4441983489713 L(r)(E,1)/r!
Ω 0.37380593790279 Real period
R 1.0897804186331 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 99600df1 18675n1 6225d1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations