Cremona's table of elliptic curves

Curve 62328o1

62328 = 23 · 3 · 72 · 53



Data for elliptic curve 62328o1

Field Data Notes
Atkin-Lehner 2+ 3- 7+ 53- Signs for the Atkin-Lehner involutions
Class 62328o Isogeny class
Conductor 62328 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 9888 Modular degree for the optimal curve
Δ -6108144 = -1 · 24 · 3 · 74 · 53 Discriminant
Eigenvalues 2+ 3- -1 7+  4  1  6 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-16,-127] [a1,a2,a3,a4,a6]
Generators [16:63:1] Generators of the group modulo torsion
j -12544/159 j-invariant
L 8.2027461777327 L(r)(E,1)/r!
Ω 1.0193078495404 Real period
R 1.3412281319812 Regulator
r 1 Rank of the group of rational points
S 1.0000000000018 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 124656c1 62328i1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations