Cremona's table of elliptic curves

Curve 6240l1

6240 = 25 · 3 · 5 · 13



Data for elliptic curve 6240l1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 13- Signs for the Atkin-Lehner involutions
Class 6240l Isogeny class
Conductor 6240 Conductor
∏ cp 336 Product of Tamagawa factors cp
deg 107520 Modular degree for the optimal curve
Δ 36938364505473600 = 26 · 314 · 52 · 136 Discriminant
Eigenvalues 2+ 3- 5+  0  4 13- -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1601646,-780664896] [a1,a2,a3,a4,a6]
Generators [2514:105300:1] Generators of the group modulo torsion
j 7099759044484031233216/577161945398025 j-invariant
L 4.6704765587839 L(r)(E,1)/r!
Ω 0.13420231797558 Real period
R 1.6572265592077 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 6240d1 12480cc2 18720bq1 31200bc1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations