Cremona's table of elliptic curves

Curve 62436s1

62436 = 22 · 3 · 112 · 43



Data for elliptic curve 62436s1

Field Data Notes
Atkin-Lehner 2- 3- 11- 43- Signs for the Atkin-Lehner involutions
Class 62436s Isogeny class
Conductor 62436 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 276480 Modular degree for the optimal curve
Δ 223108776676368 = 24 · 32 · 117 · 433 Discriminant
Eigenvalues 2- 3-  2 -1 11- -4 -4 -3 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-116442,-15315687] [a1,a2,a3,a4,a6]
Generators [-198:129:1] Generators of the group modulo torsion
j 6159994394368/7871193 j-invariant
L 7.9777746650818 L(r)(E,1)/r!
Ω 0.25846703036296 Real period
R 0.85738150619975 Regulator
r 1 Rank of the group of rational points
S 1.0000000000553 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 5676g1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations