Cremona's table of elliptic curves

Curve 6279i2

6279 = 3 · 7 · 13 · 23



Data for elliptic curve 6279i2

Field Data Notes
Atkin-Lehner 3- 7+ 13- 23+ Signs for the Atkin-Lehner involutions
Class 6279i Isogeny class
Conductor 6279 Conductor
∏ cp 128 Product of Tamagawa factors cp
Δ 238007848815009 = 38 · 74 · 134 · 232 Discriminant
Eigenvalues -1 3- -2 7+ -4 13-  2  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-31024,1965359] [a1,a2,a3,a4,a6]
Generators [74:239:1] Generators of the group modulo torsion
j 3302310932110584577/238007848815009 j-invariant
L 2.4130866844371 L(r)(E,1)/r!
Ω 0.54531219584112 Real period
R 2.2125735522154 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 8 Number of elements in the torsion subgroup
Twists 100464bk2 18837f2 43953f2 81627u2 Quadratic twists by: -4 -3 -7 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations