Cremona's table of elliptic curves

Curve 6300f1

6300 = 22 · 32 · 52 · 7



Data for elliptic curve 6300f1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 6300f Isogeny class
Conductor 6300 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 23040 Modular degree for the optimal curve
Δ 7750181250000 = 24 · 311 · 58 · 7 Discriminant
Eigenvalues 2- 3- 5+ 7+  2 -4  2  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-127200,-17460875] [a1,a2,a3,a4,a6]
Generators [2735:141750:1] Generators of the group modulo torsion
j 1248870793216/42525 j-invariant
L 3.9489115747395 L(r)(E,1)/r!
Ω 0.25280092817444 Real period
R 3.905159291993 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 25200ek1 100800dl1 2100k1 1260f1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations