Cremona's table of elliptic curves

Curve 6336bc4

6336 = 26 · 32 · 11



Data for elliptic curve 6336bc4

Field Data Notes
Atkin-Lehner 2+ 3- 11- Signs for the Atkin-Lehner involutions
Class 6336bc Isogeny class
Conductor 6336 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -3147681005568 = -1 · 215 · 38 · 114 Discriminant
Eigenvalues 2+ 3- -2  0 11-  6 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,2004,78064] [a1,a2,a3,a4,a6]
Generators [5:297:1] Generators of the group modulo torsion
j 37259704/131769 j-invariant
L 3.6610785069342 L(r)(E,1)/r!
Ω 0.56637786117967 Real period
R 0.80800265111635 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6336p4 3168u4 2112k4 69696cq3 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations