Cremona's table of elliptic curves

Curve 6355b1

6355 = 5 · 31 · 41



Data for elliptic curve 6355b1

Field Data Notes
Atkin-Lehner 5+ 31- 41- Signs for the Atkin-Lehner involutions
Class 6355b Isogeny class
Conductor 6355 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 15360 Modular degree for the optimal curve
Δ 1591249771025 = 52 · 314 · 413 Discriminant
Eigenvalues -1  2 5+ -2 -2  6 -2 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-35576,2567224] [a1,a2,a3,a4,a6]
Generators [-172:1992:1] Generators of the group modulo torsion
j 4979615664246680449/1591249771025 j-invariant
L 3.1135141976523 L(r)(E,1)/r!
Ω 0.82747941605046 Real period
R 0.62710808616707 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 101680m1 57195x1 31775g1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations