Cremona's table of elliptic curves

Curve 6355c2

6355 = 5 · 31 · 41



Data for elliptic curve 6355c2

Field Data Notes
Atkin-Lehner 5- 31+ 41- Signs for the Atkin-Lehner involutions
Class 6355c Isogeny class
Conductor 6355 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 24625625 = 54 · 312 · 41 Discriminant
Eigenvalues  1  2 5-  4 -6 -4  0 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-202,999] [a1,a2,a3,a4,a6]
Generators [18:51:1] Generators of the group modulo torsion
j 918613512361/24625625 j-invariant
L 7.145911709726 L(r)(E,1)/r!
Ω 2.1196914397882 Real period
R 1.6856018700627 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 101680bh2 57195h2 31775c2 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations