Cremona's table of elliptic curves

Curve 6384l2

6384 = 24 · 3 · 7 · 19



Data for elliptic curve 6384l2

Field Data Notes
Atkin-Lehner 2+ 3- 7- 19+ Signs for the Atkin-Lehner involutions
Class 6384l Isogeny class
Conductor 6384 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ -3772790784 = -1 · 211 · 36 · 7 · 192 Discriminant
Eigenvalues 2+ 3-  2 7- -6 -2 -8 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,128,-2860] [a1,a2,a3,a4,a6]
Generators [20:90:1] Generators of the group modulo torsion
j 112363774/1842183 j-invariant
L 5.1986032668727 L(r)(E,1)/r!
Ω 0.68228035819608 Real period
R 1.2699088686987 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3192l2 25536cp2 19152w2 44688o2 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations