Cremona's table of elliptic curves

Curve 63960r1

63960 = 23 · 3 · 5 · 13 · 41



Data for elliptic curve 63960r1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13- 41- Signs for the Atkin-Lehner involutions
Class 63960r Isogeny class
Conductor 63960 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 5038080 Modular degree for the optimal curve
Δ -1.3472932399395E+21 Discriminant
Eigenvalues 2- 3- 5+ -2  0 13-  4 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-37674616,89011387520] [a1,a2,a3,a4,a6]
Generators [4720:127920:1] Generators of the group modulo torsion
j -5775243105884888996916196/1315716054628412775 j-invariant
L 6.8994380348492 L(r)(E,1)/r!
Ω 0.14833635268005 Real period
R 1.9380049434722 Regulator
r 1 Rank of the group of rational points
S 0.99999999998193 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 127920d1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations