Cremona's table of elliptic curves

Curve 6405d2

6405 = 3 · 5 · 7 · 61



Data for elliptic curve 6405d2

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 61- Signs for the Atkin-Lehner involutions
Class 6405d Isogeny class
Conductor 6405 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 3322946025 = 36 · 52 · 72 · 612 Discriminant
Eigenvalues  1 3+ 5+ 7- -4  2  6  0 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-3843,90072] [a1,a2,a3,a4,a6]
Generators [-44:442:1] Generators of the group modulo torsion
j 6279302863722169/3322946025 j-invariant
L 3.7438087403057 L(r)(E,1)/r!
Ω 1.3946486693783 Real period
R 2.684409932413 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 102480bw2 19215y2 32025u2 44835y2 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations