Cremona's table of elliptic curves

Curve 64080f1

64080 = 24 · 32 · 5 · 89



Data for elliptic curve 64080f1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 89+ Signs for the Atkin-Lehner involutions
Class 64080f Isogeny class
Conductor 64080 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 240000 Modular degree for the optimal curve
Δ -415238400000 = -1 · 211 · 36 · 55 · 89 Discriminant
Eigenvalues 2+ 3- 5+ -4 -5 -4  0  6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-64443,-6296758] [a1,a2,a3,a4,a6]
j -19824100055282/278125 j-invariant
L 0.59928754593132 L(r)(E,1)/r!
Ω 0.14982188468577 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 32040h1 7120f1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations