Cremona's table of elliptic curves

Curve 64320q3

64320 = 26 · 3 · 5 · 67



Data for elliptic curve 64320q3

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 67- Signs for the Atkin-Lehner involutions
Class 64320q Isogeny class
Conductor 64320 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -356568443781120 = -1 · 217 · 33 · 5 · 674 Discriminant
Eigenvalues 2+ 3+ 5-  4  4 -6 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,17055,295137] [a1,a2,a3,a4,a6]
Generators [-147273:1298044:9261] Generators of the group modulo torsion
j 4185462859342/2720401335 j-invariant
L 6.9249957978344 L(r)(E,1)/r!
Ω 0.33627903174881 Real period
R 10.29650252287 Regulator
r 1 Rank of the group of rational points
S 1.0000000000368 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 64320cs3 8040e4 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations