Cremona's table of elliptic curves

Curve 64890bg1

64890 = 2 · 32 · 5 · 7 · 103



Data for elliptic curve 64890bg1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 7+ 103+ Signs for the Atkin-Lehner involutions
Class 64890bg Isogeny class
Conductor 64890 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 392000 Modular degree for the optimal curve
Δ -657011250000000 = -1 · 27 · 36 · 510 · 7 · 103 Discriminant
Eigenvalues 2+ 3- 5- 7+ -6  3  0 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,17796,823760] [a1,a2,a3,a4,a6]
Generators [71:-1598:1] Generators of the group modulo torsion
j 854967581780031/901250000000 j-invariant
L 4.264833196688 L(r)(E,1)/r!
Ω 0.33850104649554 Real period
R 1.2599172854842 Regulator
r 1 Rank of the group of rational points
S 1.0000000000811 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7210e1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations