Cremona's table of elliptic curves

Curve 64925j1

64925 = 52 · 72 · 53



Data for elliptic curve 64925j1

Field Data Notes
Atkin-Lehner 5+ 7- 53- Signs for the Atkin-Lehner involutions
Class 64925j Isogeny class
Conductor 64925 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 221184 Modular degree for the optimal curve
Δ -233924815578125 = -1 · 56 · 710 · 53 Discriminant
Eigenvalues -1 -1 5+ 7-  0  1 -7  7 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-43513,3552156] [a1,a2,a3,a4,a6]
Generators [90:-658:1] Generators of the group modulo torsion
j -4956477625/127253 j-invariant
L 2.7890173561483 L(r)(E,1)/r!
Ω 0.55622982537203 Real period
R 1.2535364110213 Regulator
r 1 Rank of the group of rational points
S 1.0000000000534 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2597b1 9275c1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations