Cremona's table of elliptic curves

Curve 65550br2

65550 = 2 · 3 · 52 · 19 · 23



Data for elliptic curve 65550br2

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 19- 23+ Signs for the Atkin-Lehner involutions
Class 65550br Isogeny class
Conductor 65550 Conductor
∏ cp 72 Product of Tamagawa factors cp
Δ -3786168000000000 = -1 · 212 · 3 · 59 · 193 · 23 Discriminant
Eigenvalues 2- 3+ 5+  1  3 -5  0 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,-55588,-5872219] [a1,a2,a3,a4,a6]
Generators [445:-7823:1] Generators of the group modulo torsion
j -1215758517658489/242314752000 j-invariant
L 8.6275442971868 L(r)(E,1)/r!
Ω 0.15380983634167 Real period
R 0.7790594345916 Regulator
r 1 Rank of the group of rational points
S 0.99999999993846 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13110n2 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations