Cremona's table of elliptic curves

Curve 65600be1

65600 = 26 · 52 · 41



Data for elliptic curve 65600be1

Field Data Notes
Atkin-Lehner 2- 5+ 41+ Signs for the Atkin-Lehner involutions
Class 65600be Isogeny class
Conductor 65600 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 32768 Modular degree for the optimal curve
Δ 41984000000 = 216 · 56 · 41 Discriminant
Eigenvalues 2-  0 5+ -2  0 -4  2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1100,10000] [a1,a2,a3,a4,a6]
Generators [-35:75:1] [-6:128:1] Generators of the group modulo torsion
j 143748/41 j-invariant
L 9.5027986860213 L(r)(E,1)/r!
Ω 1.0643517963658 Real period
R 2.2320624436505 Regulator
r 2 Rank of the group of rational points
S 1.0000000000022 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 65600a1 16400b1 2624d1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations