Cremona's table of elliptic curves

Curve 6633c1

6633 = 32 · 11 · 67



Data for elliptic curve 6633c1

Field Data Notes
Atkin-Lehner 3- 11+ 67- Signs for the Atkin-Lehner involutions
Class 6633c Isogeny class
Conductor 6633 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 16128 Modular degree for the optimal curve
Δ -3210130419507 = -1 · 36 · 114 · 673 Discriminant
Eigenvalues  2 3-  2 -2 11+ -2 -7  3 Hecke eigenvalues for primes up to 20
Equation [0,0,1,3651,14863] [a1,a2,a3,a4,a6]
Generators [6244:72931:64] Generators of the group modulo torsion
j 7382979842048/4403471083 j-invariant
L 8.0670020083228 L(r)(E,1)/r!
Ω 0.48693663781667 Real period
R 1.3805701094386 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 106128bs1 737a1 72963w1 Quadratic twists by: -4 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations