Cremona's table of elliptic curves

Curve 66880cu1

66880 = 26 · 5 · 11 · 19



Data for elliptic curve 66880cu1

Field Data Notes
Atkin-Lehner 2- 5- 11+ 19+ Signs for the Atkin-Lehner involutions
Class 66880cu Isogeny class
Conductor 66880 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 583680 Modular degree for the optimal curve
Δ -3159721540321280 = -1 · 238 · 5 · 112 · 19 Discriminant
Eigenvalues 2-  0 5- -4 11+ -6  0 19+ Hecke eigenvalues for primes up to 20
Equation [0,0,0,-240172,45384144] [a1,a2,a3,a4,a6]
Generators [325:1287:1] Generators of the group modulo torsion
j -5844547788286689/12053381120 j-invariant
L 3.624332238154 L(r)(E,1)/r!
Ω 0.44934659489242 Real period
R 4.032891624328 Regulator
r 1 Rank of the group of rational points
S 1.0000000000635 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 66880bt1 16720y1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations